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Abstract
Clustering	data	continues	to	be	a	highly	active	area	of	data	analysis,	and	resemblance	
profiles	are	being	incorporated	into	ecological	methodologies	as	a	hypothesis	testing-	
based	 approach	 to	 clustering	 multivariate	 data.	 However,	 these	 new	 clustering	
techniques	have	not	been	rigorously	tested	to	determine	the	performance	variability	
based	on	the	algorithm’s	assumptions	or	any	underlying	data	structures.	Here,	we	use	
simulation	 studies	 to	 estimate	 the	 statistical	 error	 rates	 for	 the	 hypothesis	 test	 for	
multivariate	 structure	 based	 on	 dissimilarity	 profiles	 (DISPROF).	 We	 concurrently	
tested	a	widely	used	algorithm	that	employs	the	unweighted	pair	group	method	with	
arithmetic	mean	(UPGMA)	to	estimate	the	proficiency	of	clustering	with	DISPROF	as	a	
decision	 criterion.	 We	 simulated	 unstructured	 multivariate	 data	 from	 different	
probability	 distributions	 with	 increasing	 numbers	 of	 objects	 and	 descriptors,	 and	
grouped	data	with	increasing	overlap,	overdispersion	for	ecological	data,	and	correlation	
among	descriptors	within	groups.	Using	simulated	data,	we	measured	the	resolution	
and	correspondence	of	clustering	solutions	achieved	by	DISPROF	with	UPGMA	against	
the	reference	grouping	partitions	used	to	simulate	the	structured	test	datasets.	Our	
results	 highlight	 the	 dynamic	 interactions	 between	 dataset	 dimensionality,	 group	
overlap,	and	the	properties	of	 the	descriptors	within	a	group	 (i.e.,	overdispersion	or	
correlation	structure)	that	are	relevant	to	resemblance	profiles	as	a	clustering	criterion	
for	multivariate	data.	These	methods	are	particularly	useful	for	multivariate	ecological	
datasets	that	benefit	from	distance-	based	statistical	analyses.	We	propose	guidelines	
for	 using	 DISPROF	 as	 a	 clustering	 decision	 tool	 that	 will	 help	 future	 users	 avoid	
potential	pitfalls	during	the	application	of	methods	and	the	interpretation	of	results.

K E Y W O R D S
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1  | INTRODUCTION

In	data-	rich	scientific	studies,	it	is	often	necessary	to	apply	a	clustering	
algorithm	to	detect	groups	of	homogenous	objects	with	respect	to	a	

set	of	descriptors	(i.e.,	measured	variables).	Detection	of	groups	is	use-
ful	in	ecology,	economics,	genetics,	and	other	disciplines	that	analyze	
large,	multidimensional	datasets.	Clustering	techniques	for	multivari-
ate	datasets	are	diverse	and	can	be	drawn	from	methods	derived	from	
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one	or	more	of	the	following	approaches:	sequential	versus	simultane-
ous,	agglomerative	versus	divisive,	monothetic	versus	polythetic,	hier-
archical	versus	 nonhierarchical,	 probabilistic	versus	 nonprobabilistic,	
and	constrained	versus	unconstrained	(Legendre	&	Legendre,	2012).	In	
many	cases,	these	methods	are	sensitive	to	the	sequence	of	the	steps	
within	the	algorithm,	to	random	decisions	enforced	by	the	algorithm,	
or	to	arbitrary	assignment	of	stopping	rules,	numbers	of	clusters,	or	
levels	of	resemblance	that	define	homogeneity.

1.1 | Resemblance profiles and clustering criterion

Multivariate	studies	of	complex	datasets	are	often	analyzed	statisti-
cally	 using	 distance-	based	 (db)	 methods.	 These	 db-	methods	 begin	
with	a	series	of	pairwise	comparisons	between	all	objects	 to	deter-
mine	their	relative	resemblances	with	respect	to	a	set	of	descriptors,	
and	these	resemblance	values	can	be	interpreted	as	either	similarity	or	
dissimilarity.	The	selection	of	a	resemblance	measure	is	discretionary	
and	varies	with	the	type	of	data	being	analyzed	as	well	as	the	method	
of	 analysis	 (Batagelj	&	Bren,	 1995;	Clarke,	 Somerfield,	&	Chapman,	
2006;	Faith,	Minchin,	&	Belbin,	1987).	Clarke,	Somerfield,	and	Gorley	
(2008)	developed	 the	SIMPROF	 routine	based	on	 the	 concept	of	 a	
“similarity	profile,”	which	represents	the	matrix	of	pairwise	similarity	
values	between	any	set	of	objects.

SIMPROF	was	implemented	as	a	clustering	solution	in	v-	6	of	the	
PRIMER	software	package	and	was	first	used	to	describe	community	
structure	 in	marine	nematodes	(Liu,	Zhang,	&	Huang,	2007)	and	 lar-
val	marine	 fishes	 (Muhling,	 Beckley,	Koslow,	&	Pearce,	 2008).	Over	
the	last	decade,	the	number	of	peer-	reviewed	publications	that	incor-
porate	SIMPROF	in	some	portion	of	their	methodologies	has	grown.	
A	search	of	Web	of	Science©	for	the	term	“SIMPROF”	(searched	20	
November	2016)	returned	32	publications	since	2007	and	indicated	

the	original	Clarke	et	al.	(2008)	paper	had	279	citations.	Publications	
utilizing	 SIMPROF	 tend	 to	 come	 from	marine	 ecology,	with	 studies	
focusing	on	beta-	diversity	in	reef	corals	(Huang	et	al.,	2015),	diatoms	
(Hernandez	 Almeida	 &	 Siqueiros	 Beltrones,	 2012),	 fishes	 (Macedo-	
Soares,	 Freire,	 &	 Muelbert,	 2012;	 Selleslagh	 et	al.,	 2009),	 fish	 gut	
contents	(French,	Clarke,	Platell,	&	Potter,	2013),	macrofauna	(Rehm,	
Hooke,	&	Thatje,	2011),	and	sediment	microbes	(Gilbert	et	al.,	2009).	
SIMPROF-	based	studies	have	also	been	conducted	on	dinoflagellates	
and	ciguatera	poisoning	(Parsons,	Settlemier,	&	Ballauer,	2011),	food	
webs	 (Kelly	 &	 Scheibling,	 2012),	 habitat	 classifications	 (Gonzalez-	
Mirelis	 &	 Buhl-	Mortensen,	 2015;	 Valesini,	 Hourston,	 Wildsmith,	
Coen,	 &	 Potter,	 2010),	 species/environment	 relationships	 (Travers,	
Potter,	Clarke,	&	Newman,	2012),	metagenomics	(Khodakova,	Smith,	
Burgoyne,	 Abarno,	 &	 Linacre,	 2014),	 and	 otolith	 elemental	 micro-
chemistry	(Moore	&	Simpfendorfer,	2014).	While	the	preceding	litera-
ture	review	reflects	the	recent	use	of	the	algorithm	in	ecological	appli-
cations,	it	is	likely	that	the	method	has	uses	in	other	disciplines	as	well.

Clarke	et	al.	(2008)	demonstrated	the	use	of	SIMPROF	in	conjunc-
tion	 with	 agglomerative	 hierarchical	 clustering	 via	 the	 unweighted	
pair	group	method	with	arithmetic	mean	(UPGMA;	Figure	1),	and	they	
also	described	two	theoretical	corollaries	to	the	functional	dynamics	
of	 their	 algorithm.	 They	 proposed	 that	 (1)	 the	 test	 for	 multivariate	
structure	would	become	more	powerful	as	the	number	of	descriptors	
increased	and	 (2)	 that	the	resolution	of	any	structure	 identified	 (i.e.,	
number	of	groups,	G)	might	be	far	finer	(greater)	than	is	meaningfully	
interpreted	 (Clarke	 et	al.,	 2008).	 It	 is	 our	 understanding	 that	 these	
corollaries	 have	yet	 to	 be	 tested	 empirically	with	 numerical	 simula-
tions,	 and	given	 recent	 inconsistencies	 in	 the	performance	of	 other	
	permutation-		and	distance-based	hypothesis	tests	(e.g.,	ANOSIM	and	
MANTEL	tests;	Anderson	&	Walsh,	2013;	Legendre	&	Fortin,	2010),	
we	felt	this	action	was	warranted.

F IGURE  1 Theoretical	diagram	of	
the	process	flow	for	DISPROF	clustering	
with	UPGMA:	(1)	Data	are	pretreated	and	
configured.	(2)	An	appropriate	resemblance	
metric	is	applied	to	the	pretreated	dataset.	
(3)	The	UPGMA	site-	connection	linkage	is	
assembled.	(4)	DISPROF	is	employed	in	an	
iterative	process	to	identify	the	grouping	
structure	in	the	data	and	create	breaks	in	
the	associated	linkage	tree.	(5)	DISPROF	
settles	on	a	final	solution,	and	a	two-	
dimensional	dendrogram	visualization	is	
created
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The	present	paper	 intends	 to	 improve	our	understanding	of	 the	
proposed	corollaries	to	the	Clarke	et	al.	(2008)	approach,	to	help	users	
of	SIMPROF	avoid	potential	pitfalls	during	analysis	and	interpretation,	
and	to	encourage	use	of	the	method	outside	of	the	ecological	focus.	
We	 tested	 the	 SIMPROF	method	 by	 estimating	 and	 describing	 the	
type	I	and	type	II	error	rates	for	the	hypothesis	test	for	multivariate	
structure	while	varying	the	datasets’	distribution	type,	dimensionality,	
data-	cloud	overlap	between	adjacent	clusters,	and	data-	cloud	shape	
or	overdispersion.	We	also	elucidated	the	effects	of	dataset	configu-
ration	variability	on	the	quality	of	the	solution	achieved	by	examining	
the	level	of	correspondence	between	the	algorithm’s	clustering	solu-
tions	and	the	known	grouping	partitions	for	datasets	with	structure.

1.2 | Review of the SIMPROF approach

For	a	set	of	objects,	a	similarity	profile	is	created	by	plotting	the	rank-	
ordered	 similarity	 values	 versus	 each	 value’s	 rank	 (Figure	2a).	 This	
profile	is	ultimately	checked	against	the	mean	rank-	ordered	similarity	
values	for	many	randomized	profiles	(i.e.,	≥1,000)	created	via	permut-
ing	 the	original	 descriptor	measurements	 across	objects.	 The	π	 sta-
tistic	is	created	by	summing	the	absolute	deviations	of	the	observed	
profile	from	the	mean	of	the	set	of	permuted	profiles.	Intuitively,	one	
can	see	 that	 if	an	observed	profile	has	many	more	high	and/or	 low	
similarity	 values	 than	would	be	expected	under	 the	null	 conditions,	
then	multivariate	structure	would	be	deemed	present	(Figure	2b).	The	
null	hypothesis	(Ho)	of	“no	multivariate	structure	among	objects,	with	
respect	to	the	descriptors”	 in	the	original	dataset,	 is	 formally	tested	
by	examining	the	placement	of	the	observed	π	statistic	relative	to	the	
null	distribution	of	all	permuted	π	statistics.	To	model	the	null	distribu-
tion	of	the	π	statistic,	an	additional	set	of	permuted	similarity	profiles	
(i.e.,	≥1,000	iterations)	is	created,	and	their	associated	π	statistics	are	
calculated	with	respect	to	the	same	mean	profile	used	to	calculate	the	
original	observed	π	statistic.	The	p-	value	for	the	observed	π	statistic	is	
calculated	as	the	proportion	of	π	statistics	that	are	at	least	as	large	as	
the	observed	statistic	versus	the	total	number	of	π	statistics	calculated	
via	permutation	(Clarke	et	al.,	2008).

Resemblance	 profile	 consideration	 is	 inserted	 into	 UPGMA	
clustering	 as	 a	 clustering	 decision	 criterion	 in	 an	 iterative	 process	
(Figure	1).	The	data	are	required	to	be	in	[N × P]	matrix	format,	where	
the	N	rows	represent	individual	objects	(sampling	units)	and	the	P col-
umns	of	the	matrix	represent	the	descriptors	(measured	variables).	In	
many	real-	world,	 large	datasets,	there	are	often	some	objects	where	
certain	descriptor	measurements	are	missing	due	to	either	technical	
failure	or	human	error.	When	compiling	these	data,	we	must	remove	
objects	that	do	not	contain	an	accurate	measurement	for	all	descrip-
tors	 of	 interest	 (zero-	value	 measurements	 may	 be	 appropriate,	 but	
missing	 measurements	 are	 not).	 Once	 the	 data	 are	 assembled	 and	
checked	for	quality,	user-	defined	pretreatments	are	applied	(e.g.,	stan-
dardization	 and/or	 normalization)	 and	 an	 appropriate	 resemblance	
measure	 is	 employed.	 One	 advantage	 to	 the	 approach	 considered	
here	is	the	use	of	distribution-	free	statistics,	which	releases	the	ana-
lyst	 from	 the	 often-	unrealistic	 assumption	 of	 Gaussian	 data	 distri-
butions,	 and	decreases	 the	need	 for	data	 transformations	 to	 satisfy	

those	 assumptions.	 Another	 advantage	 to	 using	 distribution-	free	
significance	tests	 is	that	they	are	often	generalized	to	accept	any	of	
the	potential	pool	of	resemblance	measures	available	to	researchers	
(Legendre	&	Legendre,	2012).

After	a	square,	symmetric	distance-	matrix	is	produced,	an	UPGMA	
clustering	solution	is	constructed	to	reflect	the	magnitude	of	appar-
ent	resemblance	between	the	objects	with	respect	to	the	descriptors.	
SIMPROF	 can	 be	 used	 as	 an	 iterative	 decision	 criterion	 to	 assess	
each	 node	 of	 the	 UPGMA	 dendrogram	 to	 determine	 whether	 the	
objects	connected	by	any	node	are	clusters	of	relative	homogeneity,	
or	whether	there	is	additional	multivariate	structure	present	in	those	
remaining	objects	(Clarke	et	al.,	2008).

Recall	that	the	Ho	tested	by	SIMPROF	is	of	“no	multivariate	struc-
ture	 among	 objects	with	 respect	 to	 the	 descriptors.”	When	 assess-
ing	 an	UPGMA	dendrogram,	SIMPROF	begins	hypothesis	 testing	at	
the	node	 that	has	 the	 smallest	 similarity	value	and	 that	 contains	 all	
objects.	If	Ho	is	rejected	and	structure	is	deemed	present	in	the	objects	
connected	by	the	top-	level	node,	the	SIMPROF	routine	repeats	inde-
pendently	on	the	two	sets	of	objects	 joined	at	that	node.	SIMPROF	
iteratively	assesses	the	presence	of	structure	for	all	newly	identified	
subsets	within	the	original	top-	level	subsets	until	a	stopping	point	is	

F IGURE  2 Two	examples	of	Euclidean-	dissimilarity	profiles:	
Resemblance	value	sort	order	is	increasing	along	the	x-	axis,	and	the	
sorted	pairwise	dissimilarity	values	are	increasing	along	the	y-	axis.	
(a)	A	dissimilarity	profile	for	a	simulated	unstructured	dataset	drawn	
from	the	exponential	probability	distribution	with	[N × P]	=	[50	×	50].	
The	observed	profile	is	within	the	99%	confidence	envelope	based	on	
999	permutations	of	the	observed	data.	(b)	A	dissimilarity	profile	for	a	
simulated	structured	dataset	drawn	from	the	normal	distribution	with	
two	groups	having	equal	variance,	[N × P]	=	[50	×	50],	and	Ov = 0.01. 
The	observed	profile	has	many	dissimilarity	values	that	are	above	and	
below	the	expected	mean	permuted	profile,	and	its	associated	99%	
confidence	envelope,	thereby	signifying	the	presence	of	structure	in	
the	dataset
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reached	and	all	possible	 subsets	have	been	 identified.	The	stopping	
point	 for	 the	 algorithm	 is	when	 either	 a	 nonsignificant	p-	value	 (i.e.,	
p-	value	≥	α)	 for	 all	 remaining	 subsets	 is	 obtained	 (failure	 to	 reject	
Ho),	 or	 when	 the	 number	 of	 objects	 that	 remain	 connected	within	
untested	 subsets	 is	 no	 greater	 than	 two	 (Clarke	 et	al.,	 2008).	 Due	
to	 the	multiple-	testing	aspect	of	 the	algorithm,	a	p-	value	correction	
method	 can	 be	 employed	 when	 determining	 significance	 for	 tests	
between	sets	of	objects	 (Clarke	et	al.,	2008).	The	primary	output	of	
UPGMA	clustering	with	SIMPROF	is	a	grouping	partition	containing	
a	cluster	assignment	 for	each	object.	Using	 this	decision	 framework	
creates	immediate	advantages	when	interpreting	the	clustering	den-
drogram	in	that	(1)	the	researcher	is	no	longer	required	to	arbitrarily	
assign	a	single	 level	of	similarity	 that	defines	all	clusters	and	 (2)	 the	
clusters	can	be	defined	by	varying	levels	of	similarity.	To	obtain	a	two-	
dimensional	ordination	of	 the	 identified	groups	 in	hyperdimensional	
space,	a	Euclidean	embedding	can	be	produced	via	principle	coordi-
nates	analysis	 (PCoA;	Gower,	1966).	This	ordination	is	based	on	the	
same	 symmetric	 resemblance	matrix	 used	 in	 the	 clustering	process,	
and	the	group	assignments	can	be	overlain	in	place	of	the	object	labels	
to	present	a	final	clustering	diagram.

2  | METHODS

2.1 | Rationale

The	only	modification	we	made	to	the	original	Clarke	et	al.	(2008)	algo-
rithm	was	 to	use	dissimilarities	 (or	distance)	 for	 the	computation	of	
the	resemblance	profile;	this	convention	is	consistent	with	the	Fathom	
Toolbox	for	MATLAB	(Jones,	2015),	which	was	used	for	our	testing	and	
evaluations,	and	is	advantageous	because	dissimilarity	measures	span	
a	 broad	 range	 of	 types	 (i.e.,	metric,	 nonmetric,	 or	 semi-	metric)	 that	
can	be	applied	to	a	diversity	of	potential	 research	disciplines.	These	
types	of	resemblance	measures	also	allow	ordination	of	the	objects	via	
multidimensional	methods,	which	require	db-	resemblance	measures,	
and	are	intuitively	interpreted	with	two	objects’	spatial	“closeness”	in	
ordination	space	as	being	more	 similar	 (i.e.,	 less	dissimilar).	Because	
similarity	profiles	and	dissimilarity	profiles	are	analogous,	we	refer	to	
“DISPROF”	hereafter.

To	test	the	effectiveness	of	DISPROF	at	detecting	the	presence	of	
multivariate	structure	among	objects,	we	used	simulated	datasets	with	
both	unstructured	and	structured	sets	of	descriptors,	under	four	dif-
ferent	simulation	scenarios	(Table	1).	We	attempted	to	simulate	data	
that	would	be	applicable	to	a	range	of	numerical	studies	including,	but	
not	limited	to,	the	ecological	type	of	data	that	SIMPROF	was	initially	
developed	for	(Table	2).	The	unstructured	data	were	simulated	with	a	
single	grouping	structure	present	and	were	used	for	estimating	type	
I	 error	 rates	 for	DISPROF;	 the	 structured	data	were	 simulated	with	
known	groups	among	objects	and	were	used	to	estimate	type	II	error	
rates	and	the	power	of	the	hypothesis	test.	Structured	data	were	also	
used	to	examine	the	effects	of	descriptor	overdispersion	in	ecological	
count	data,	as	well	as	the	effects	of	increasing	numbers	of	descriptors	
and	 the	 type	of	correlation	structure	among	 them.	We	retained	 the	
grouping	partitions	from	the	structured	data	simulations,	and	doing	so	

allowed	us	to	test	the	correspondence	between	the	clustering	solu-
tions	 achieved	 by	 the	 UPGMA	with	 DISPROF	 algorithm	 and	 these	
baseline	 partitions.	 The	 criterion	 for	 rejecting	Ho	 in	 this	 simulation	
study	was	set	at	α =	.05,	and	we	opted	to	use	a	progressive	Bonferroni	
p-	value	correction	(Legendre	&	Legendre,	2012)	for	 instances	where	
repeated	hypothesis	testing	was	conducted	(i.e.,	simulated	structured	
data	testing).

All	 data	 simulations	 were	 coded	 in	 MATLAB	 using	 the	 Fathom	
Toolbox	(Jones,	2015),	the	OCLUS	routine	(Steinley	&	Henson,	2005),	
and	the	Darkside	Toolbox	(Kilborn,	2015).	To	complete	the	algorithm	
testing	 described	 below,	 we	 used	 the	 University	 of	 South	 Florida	
Research	Computing	high-	performance	computing	hardware	running	
MATLAB	v.	2016	and	used	an	experimental	MATLAB	module	from	the	
Fathom	Toolbox	called	“ClustX.”

2.2 | Data simulation methods

In	all	simulations,	varying	size	conditions	for	the	resultant	data	matri-
ces	were	used,	and	this	allowed	us	to	investigate	the	effects	of	chang-
ing	the	numbers	of	objects	(N)	and	dataset	dimensionalities	(P,	num-
ber	of	descriptors)	on	DISPROF’s	performance,	and	also	 the	quality	
of	the	clustering	solutions	achieved	by	the	algorithm.	S = 1,000	data-
sets	were	simulated	for	each	combination	of	[N × P]	under	additional	
simulation	 scenarios	 described	 in	 Table	1.	 The	 simulation	 scenarios	
allowed	 further	 investigation	 of	 DISPROF’s	 performance	 regarding	
variation	in	(1)	the	underlying	probability	distribution	of	the	data;	(2)	
the	amount	of	overlap	between	groups’	data	clouds;	(3)	the	location	
and	dispersion	among	groups	of	objects	representing	ecological	abun-
dance	data;	 and	 (4)	 correlation	 structures	 among	descriptors	within	
groups	of	objects.

2.2.1 | Unstructured data (Sim 1)

The	first	set	of	simulations	were	used	to	estimate	type	I	error	rates	
for	 the	DISPROF	 routine	 for	data	drawn	 from	eight	different	prob-
ability	distributions	 (Table	1).	Each	probability	distribution	was	used	
to	simulate	a	specific	data	type,	and	the	properties	of	the	simulated	
data	informed	the	choice	of	resemblance	measure	(Table	2).	Each	sta-
tistical	 distribution	 had	 S = 40,000	 unstructured	 datasets	 across	 all	
combinations	of	[N × P].	A	total	of	320,000	independently	generated	
unstructured	 datasets	were	 used	 to	 complete	 the	 type	 I	 error	 rate	
estimations.	Within	each	of	the	S = 1,000	equally	sized	datasets,	the	
columns	were	individually	parameterized	at	random	from	a	set	range	
of	values	specific	to	the	underlying	probability	distribution	(Table	1).	
The	 instances	 where	 random	 processes	 produced	 objects	 with	 all	
zero-	value	entries	were	allowed	to	persist	in	the	data,	and	they	were	
treated	 as	 a	 special	 case	 during	 the	 calculation	 of	 Bray–Curtis	 and	
Jaccard	 dissimilarity	 matrices.	 In	 this	 special	 case,	 any	 comparison	
of	 two	objects	with	 all	 zero-	value	 entries	would	 be	 assigned	 a	 dis-
similarity	value	of	one	(i.e.,	perfectly	dissimilar),	as	they	share	no	com-
mon	variability	(Anderson	&	Walsh,	2013;	Warton	&	Hudson,	2004).	
This	convention	was	upheld	for	all	simulation	scenarios	where	it	was	
appropriate	to	do	so	(Sim	1e,	1f,	1h;	Sim	3).
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Each	 probability	 distribution	was	 tested	 in	 batches	 of	 S = 1,000	
according	to	their	[N × P]	configurations.	The	S	independent	datasets	
were	each	 tested	with	 the	DISPROF	routine	one	time	to	determine	
whether	the	null	was	rejected	at	α =	.05.	The	resultant	p-value	for	each	
DISPROF	hypothesis	 test	was	collected,	 and	 the	proportion	of	 all	S 
datasets	where	the	associated	p-	value	was	significant	was	calculated	
for	each	[N × P]	configuration.

2.2.2 | Structured data—overlapping groups (Sim 2)

The	second	set	of	simulations	were	designed	to	examine	the	effects	
of	dataset	configuration,	as	well	as	the	average	amount	of	overlap	
per	 dimension	 between	 the	 data	 clouds	 that	 represent	 grouped	
objects,	 on	 the	 DISPROF	 routine	 and	 its	 grouping	 solutions.	 We	
used	 an	 established	 data	 simulation	 routine	 described	 by	 Steinley	
and	Henson	 (2005),	 called	OCLUS,	 to	 produce	 a	 total	 of	 450,000	

TABLE  1 Detail	of	the	simulation	scenarios	used	for	the	study	listed	as	Sim	1–Sim	4

Probability distribution G Parameter 1 Parameter 2 N P

Sim	1.	Unstructured	data

a. Binomial 1 T = 1 0	≤	q ≤ 1 {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

b. Chi-	square 1 1	≤	df	≤ N −	1 — {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

c. Exponential 1 0	≤	μ ≤	5 — {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

d. Log-	normal 1 0	≤	μ ≤	50 0	≤	σ2	≤	5 {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

e. Negative	binomial 1 0	≤	T ≤ 10 0	≤	q ≤ 1 {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

f. Negative	binomial/
Poissona

1 1	≤	μ ≤	100 0	≤	θ ≤	1 {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

g. Normal 1 −100	≤	μ ≤	100 0	≤	σ ≤	5 {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

h. Poisson 1 0	≤	λ ≤	1,000 — {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	150,	225,	300}

Sim	2.	Structured	data—overlapping	groups

a. Normal	(OCLUS) 2 σ
2

1
 = σ2

2
 = 1 Ov	=	{0.01,	0.02,	…	0.49,	0.5} n1 = n2	=	25,	N = 50 {2,	3,	5,	10,	25,	50,	150,	225,	300}

Sim	3.	Structured	data—Overdispersed	descriptors

a. Negative	binomial/
Poissona

2 μ1 = μ2 = 10 θ1	=	0,	θ2	=	{0,	0.1,	0.4,	0.9} n1 = n2	=	25,	N = 50 {2,	3,	5,	10,	25,	50,	150,	225,	300}

b. Negative	binomial/
Poissona

2 μ1	=	10,	μ2 = 30 θ1	=	0,	θ2	=	{0,	0.1,	0.4,	0.9} n1 = n2	=	25,	N = 50 {2,	3,	5,	10,	25,	50,	150,	225,	300}

Sim	4.	Structured	data—correlated	descriptors

a. Normal 2 μ1	=	10,	μ2 = 30 Σ1	=	0,	Σ2	=	{0,	0.6,	0.9} n1 = n2 =	25,	N = 50 {2,	3,	5,	10,	25,	50,	150,	225,	300}

b. Normal 2 μ1 =	10,	μ2 = 30 Σ1 = Σ2 =	{0.6,	0.9} n1 = n2 =	25,	N = 50 {2,	3,	5,	10,	25,	50,	150,	225,	300}

For	each	scenario,	S = 1,000	datasets	were	simulated,	and	mean	dissimilarity	profiles	(DISPROF)	were	obtained	with	1,000	permutations	and	the	
p-	values	for	the	test	were	calculated	with	999	permutations	(α	=	.05).	Variables	are	as	follows:	G,	total	number	of	groups;	N ,	total	number	of	
objects;	P,	total	number	of	descriptors;	T,	number	of	successful	trials;	df,	degrees	of	freedom;	μi,	mean	for	all	descriptors	in	group	i; λ,	Poisson	rate	
parameter;	σ2

i
,	variance	for	all	descriptors	in	group	i; q,	probability	of	success	for	a	trial;	θi,	overdispersion	parameter	for	all	descriptors	in	group	i; 

Σi,	correlation	among	descriptors	in	group	i; Ov,	average	overlap	per	axis	between	data	clouds	for	G1	and	G2.
aWhere	θ =	0,	then	μ = σ2,	and	the	negative	binomial	distribution	reduces	to	the	Poisson.

TABLE  2 Probability	distributions	used	
in	Sim	1–Sim	4:	The	representative	data	
type	and	the	resemblance	measure	used	to	
determine	the	pairwise	distance	between	
objects

Probability distribution Data type Resemblance

Binomial Binary,	presence/absence Jaccard

Chi-	square Rational,	continuous Euclidean

Exponential Rational,	continuous Euclidean

Log-	normal Rational,	continuous Euclidean

Negative	binomial Integer,	frequency	with	many	0’s Bray–Curtis

Negative	binomial/Poisson Overdispersed	ecological	count	data Bray–Curtis

Normal Rational,	continuous Euclidean

Poisson Integer,	frequency	with	many	0’s Bray–Curtis

No	data	were	transformed	prior	to	subjection	to	the	resemblance	measure.
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datasets	with	overlapping	grouping	structures.	The	OCLUS	routine	
implementation	in	MATLAB	allowed	the	configuration	of	the	prob-
ability	distribution	 type,	 the	number	of	groups	 (G)	 and	whether	or	
not	they	overlap,	the	number	of	objects	per	group	(ni),	and	the	aver-
age	 amount	 of	 group	 overlap	 across	 all	 dimensions	 (Ov)	 between	
groups	of	objects	 in	hyperdimensional	space.	Note	that	Ov	 for	the	
entire	dataset	 is	 evenly	distributed	 across	 all	 dimensions,	 and	 two	
major	assumptions	of	the	OCLUS	routine	are	(1)	that	all	dimensions	
are	 independent;	 and	 (2)	 that	 all	 groups	 are	 independent	 (Steinley	
&	Henson,	2005).	For	our	purposes,	when	simulating	all	structured	
data	with	multiple	groups	(Sim	2–Sim	4),	a	simple	simulation	design	
was	employed	where	 two	groups	 (G = 2)	with	n1 = n2	=	25	 (N = 50)	
objects	were	simulated.	In	Sim	2,	for	each	[N × P]	configuration	the	
average	 overlap	 between	 the	 two	 groups	 was	 increased	 progres-
sively	from	Ov	=	0.01	to	0.50,	in	0.01	increments.	S = 1,000	datasets	
were	simulated	for	each	[N × P × Ov]	configuration.	Descriptor	data	
were	 drawn	 from	 the	 multivariate	 normal	 distribution	 with	 equal	
variances	 (�2

1
 = �2

2
	=	1)	 for	 both	 groups	 (Anderson	 &	Walsh,	 2013;	

Steinley	&	Henson,	2005).	Normally	distributed	data	were	used	 to	
examine	 the	 type	 II	 error	 because	 the	 concern	 that	 the	 underly-
ing	 probability	 distribution	of	 the	 data	would	 impart	 some	 sort	 of	
unknown	 structure	was	negligible	 as	 the	data	were	 simulated	 in	 a	
known	grouping	configuration.	As	cluster	analysis	falls	into	the	cat-
egory	of	 “exploratory”	data	 analysis,	 it	 should	be	obvious	 that	 the	
amount	of	overlap	between	objects	 in	 a	 sampling	data	 set,	 or	 any	
inherent	 grouping	 structure,	 is	 unknown	 at	 the	 time	 of	 testing.	
Therefore,	it	is	important	to	understand	the	empirical	effects	group	
location	and	overlap	on	clustering	solutions	if	we	are	to	put	any	faith	
in	the	solutions	provided	by	the	algorithm.

2.2.3 | Structured data—overdispersed descriptors 
(Sim 3)

The	 third	 simulation	 scenario	 also	 indirectly	 dealt	with	 group	 loca-
tion,	but	the	main	focus	of	these	simulations	was	on	determining	the	
effect	on	DISPROF	from	increasing	the	overdispersion	of	one	group	
while	holding	 the	other	group	constant,	and	 to	do	so	 for	ecological	
frequency	 data	 (i.e.,	 abundances	 or	 counts).	 We	 used	 the	 Fathom	
Toolbox	 for	MATLAB	 to	 implement	 ecological-	data	 simulation	 sce-
narios	 similar	 to	 those	used	by	Anderson	and	Walsh	 (2013),	 and	 in	
Sim	3,	we	simulated	ecological	abundance	data	drawn	from	the	over-
dispersed	negative	binomial	and/or	Poisson	distribution	(Tables	1	and	
2).	These	data	were	simulated	where	the	σ2	>>	mean	(μ),	and	the	σ2 
parameter	 is	related	to	μ	such	that	σ2 = μ+ θμ2,	where	θ	 is	the	over-
dispersion	 parameter.	 In	 cases	 where	 σ2 = μ,	 the	 data	 were	 drawn	
from	 the	 Poisson	 distribution,	 and	 the	 data	 were	 drawn	 from	 the	
negative	binomial	distribution	otherwise.	 In	Sim	3a,	we	 simulated	a	
total	of	36,000	datasets	with	G = 2,	μ1 = μ2 = 10	(collocated	groups),	
and	we	induced	heterogeneity	between	the	groups	by	increasing	the	
overdispersion	for	the	descriptors	in	G2.	In	Sim	3b,	we	maintained	the	
group	heterogeneity	from	increasing	θ2	when	we	simulated	an	addi-
tional	36,000	datasets	with	G = 2,	but	in	this	scenario,	we	set	μ1 = 10 
and	 μ2	=	30	 (separated	 groups).	 For	 all	 [N × P]	 configurations,	 four	

different	combinations	of	θ1	and	θ2	were	used	to	simulate	S = 1,000	
datasets	 for	 all	 [N × P	×	(θ1	 and	 θ2)]	 configurations	 (Table	1).	 In	 Sim	
3,	we	simulated	ecological	count	datasets	with	no	overdispersion	 in	
G1	and	 increasing	θ	 in	G2,	and	where	the	groups	were	collocated	 in	
hyperdimensional	 space	 (Sim	3a)	 or	where	 they	 existed	 in	 separate	
locations	(Sim	3b).	It	should	be	noted,	however,	that	this	method	does	
not	 account	 for	 data-	cloud	 overlap,	 and	 is	 possible	 that	 two	 simu-
lated	groups	that	do	not	share	a	mean	value	could	still	overlap	if	the	θ 
parameter	were	extremely	high.	We	tested	values	ranging	from	zero	
overdispersion,	to	low	(θ =	0.1),	to	medium	(θ =	0.4),	to	high	(θ =	0.9).

2.2.4 | Structured data—increasing correlation 
(Sim 4)

The	 fourth	 set	 of	 simulations	 was	 used	 to	 examine	 the	 effects	 of	
correlated	descriptors	within	a	group	of	objects	on	DISPROF	and	its	
clustering	outputs.	We	simulated	data	with	different	correlation	struc-
tures	 (Σ)	between	descriptors	 in	G1	and	G2,	and	where	Σ2	 increased	
in	G2	 (Sim	4a),	 and	 also	with	Σ1 = Σ2,	 but	 still	 increasing	Σ	 (Sim	4b,	
Table	1).	In	both	cases,	we	simulated	data	drawn	from	the	multivariate	
normal	distribution	with	μ1	=	10,	μ2	=	30	and	�

2

1
 = �2

2
	=	1.	The	square,	

symmetric	correlation-matrices	Σ	were	built	such	that	each	descriptor	
would	be	correlated	with	all	other	descriptors	 in	the	dataset	by	the	
proportion	listed	 in	Σ.	Sim	4	examines	data	with	correlated	descrip-
tors	whose	 level	of	correlation	varies	from	no	correlation	(Σ =	0),	to	
medium	(Σ =	0.6),	to	high	correlation	(Σ =	0.9).

2.3 | Power, resolution, and correspondence  
estimation

As	 all	 datasets	 in	 Sim	 2–Sim	 4	 had	G = 2,	 we	 estimated	 the	 pro-
portion	of	type	 II	errors	for	each	[N × P	×	Ov],	 [N × P	×	(θ1	and	θ2)],	
and	 [N × P	×	(Σ1	 and	 Σ2)]	 configuration	 by	 finding	 the	 number	 of	
instances,	per	S = 1,000,	where	the	Ho	was	retained	at	α	=	.05	(i.e.,	no	
multivariate	structure	deemed	present).	Type	II	error	estimates	were	
converted	 to	power,	and	values	≥0.80	were	considered	acceptable	
at	our	selected	confidence	level	(Cohen,	2013).	As	our	primary	inter-
est	was	 in	exploring	 the	efficacy	of	using	DISPROF	as	 a	 clustering	
criterion,	we	examined	the	first	iteration	of	sequential	testing	of	Ho 
(to	record	type	II	error	rates),	but	we	also	allowed	for	all	subsequent	
DISPROF	 iterations	 to	 run	until	 the	clustering	 implementation	was	
completed.	This	unconstrained	approach	allowed	the	UPGMA	clus-
tering	with	DISPROF	algorithm	to	settle	on	complete	clustering	solu-
tions	with	the	maximum	number	of	groups	that	could	be	discovered	
of	Gmax = N −	2.

The	 final	 result	 of	 each	DISPROF	 clustering	 attempt	was	 a	 par-
tition	 for	 the	 simulated	 objects	 that	 identified	 each	 object’s	 group	
membership.	In	all	cases,	G	and	the	generated	grouping	partition	were	
retained	 for	 further	 analysis.	 The	 number	 of	 groups	 identified	 was	
used	 to	 examine	 the	 effective	 resolution	 of	 the	 clustering	 solution,	
with	larger	values	of	G	being	indicative	of	fine	resolution	and	smaller	
G	 values	 being	 coarse.	 The	 grouping	 partitions	were	 used	 to	 com-
pare	the	computed	results	against	the	known	reference	partition	for	
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each	 structured	 dataset	 simulated.	The	measure	 of	 correspondence	
between	the	clustering	solutions’	partitions	and	their	 reference	par-
titions	was	calculated	using	the	Hubert–Arabie	adjusted	Rand	 index	
(ARIHA).	This	effort	was	undertaken	due	to	the	importance	of	a	clus-
tering	algorithm	being	able	to	find	“correct”	structure	in	the	data.	The	
absolute	value	 of	ARIHA	 ranges	 from	0	 to	 1,	 requires	 a	 probabilistic	
interpretation,	 and	 measures	 the	 likelihood	 of	 agreement	 between	
one	randomly	chosen	pair	of	objects	 represented	 in	both	partitions,	
corrected	 for	 chance	 (Hubert	 &	Arabie,	 1985).	 Negative	ARIHA	 val-
ues	can	be	interpreted	as	a	probability	of	agreement	that	is	less	than	
what	would	be	expected	by	chance	alone.	We	interpreted	ARIHA	val-
ues	≥0.80	as	“good”	correspondence	with	anything	above	0.90	being	
“excellent.”	 Likewise,	ARIHA	 values	 <0.80	were	 interpreted	 as	 “mod-
erate”	 correspondence,	 and	 values	 below	 0.65	were	 interpreted	 as	
“poor”	correspondence	(Steinley,	2004).

3  | RESULTS

3.1 | Data simulation scenarios

3.1.1 | Unstructured data (Sim 1)

The	mean	estimated	type	I	error	rates	for	DISPROF	were	within	the	
confidence	 interval	 that	would	be	expected	 for	 the	 chosen	 level	of	
α	=	.05	 for	 all	 simulated	 unstructured	 data,	 regardless	 of	 the	 base	
probability	distribution	that	the	data	were	drawn	from	(Table	3).	There	
was	also	no	apparent	effect	of	the	number	of	objects	or	descriptors	on	
the	type	I	error	rates	for	DISPROF	(Figure	3).

3.1.2 | Structured data—overlapping groups (Sim 2)

The	mean	power	values	for	each	P-	dimension,	calculated	from	the	50	
proportions	of	type	II	errors,	estimated	for	each	[N × P × Ov]	configura-
tion	(S = 1,000),	showed	an	increase	in	the	power	of	DISPROF	to	detect	
the	presence	of	multivariate	structure	as	the	overall	dimensionality	of	
the	 dataset	 increased	 (Table	4).	 A	 closer	 look	 at	 each	 P-	dimension’s	
power	values	(Figure	4)	showed	that,	for	P ≤ 10,	as	Ov	decreased,	the	
statistical	power	of	DISPROF	increased	asymptotically	from	unaccep-
table	levels	toward	1.	For	all	values	of	P ≥ 25,	the	power	was	estimated	
to	equal	1	for	all	Ov.	Furthermore,	for	any	given	Ov	the	power	increased	
as	P	increased.	The	average	number	of	groups	( ̄G)	per	S = 50,000	data-
sets	from	all	[N × P]	configurations	across	all	50	Ov	 levels	was	similar	
across	 all	P,	 ranging	 from	a	minimum	 ̄G	=	1.81	 (P = 2)	 to	 a	maximum	
̄G	=	2.16	 (P = 5;	Table	4).	Closer	 inspection	of	each	[P × Ov]	combina-
tion	(S = 1,000)	revealed	that	DISPROF	clustering	solutions	where	P ≤ 3 
displayed	an	increase	in	 ̄G	as	Ov	decreased.	 ̄G	 increased	from	a	value	
of	 ̄G <	2	and	asymptotically	approached	the	mean	of	 ̄G	for	all	cluster-
ing	solutions	within	a	given	[P × Ov]	combination.	For	all	P ≥ 5,	 ̄G	val-
ues	remained	above	2	for	all	Ov	and	were	much	more	tightly	bound	
around	 their	 respective	means	 (Figure	5a,	 Table	4).	 The	mean	 corre-
spondence	values	(ARIHA)	for	each	S = 50,000	datasets	from	all	[N × P] 
configurations	across	all	Ov	increased	as	P	increased	(Table	4),	and	for	
any	single	Ov	level,	the	ARIHA	also	increased	with	P	(Figure	5b).	A	more	
detailed	view	of	ARIHA	within	each	P-	dimension	 (Figure	5b)	 indicated	
for	P ≤ 5	the	mean	ARIHA	values	persisted	below	0.8	for	the	majority	
of	Ov	 	scenarios,	but	had	a	generally	 increasing	trend.	Eventually,	 the	
ARIHA	had	high	correspondence	values	at	 low	levels	of	Ov. All P ≥ 10 

TABLE  3 Descriptive	statistics	for	DISPROF	type	I	error	based	on	Sim	1

Probability 
distribution N P Minimum Mean Mode Maximum σ SE

Sim	1.	Type	I	error	–	S	=	40,000

a. Binomial {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.008 0.046 0.055 0.068 0.013 .002

b. Chi-	square {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.032 0.050 0.050 0.067 0.007 .001

c. Exponential {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.037 0.049 0.049 0.067 0.006 .001

d. Log-	normal {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.033 0.050 0.047 0.070 0.008 .001

e. Negative	binomial {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.034 0.049 0.050 0.064 0.006 .001

f. Negative	binomial/
Poisson

{10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.028 0.048 0.045 0.063 0.008 .001

g. Normal {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.035 0.051 0.050 0.066 0.008 .001

h. Poisson {10,	25,	50,	150,	300} {2,	3,	10,	25,	50,	
150,	225,	300}

0.036 0.049 0.043 0.062 0.007 .001

Unstructured	data:	Type	I	error	rate	estimates	and	statistics	were	obtained	from	S = 40,000	datasets	across	all	configurations	of	[N × P]	for	each	
probability	distribution	simulated.	Error	rate	estimates	for	each	configuration	were	based	on	S = 1,000	datasets,	and	all	p-	values	were	obtained	
via	999	permutations	with	significance	assessed	at	α = .05. N,	total	number	of	objects;	P,	total	number	of	descriptors;	σ,	standard	deviation	of	the	
mean;	SE,	standard	error	of	the	mean.
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clustering	solutions	had	ARIHA	values	that	were	considerably	less	vari-
able	across	all	levels	of	Ov	than	those	for	P ≤ 5.	These	solutions’	cor-
respondence	values	were	tightly	bound	around	their	respective	mean	
ARIHA	values	(Table	4)	and	displayed	good	or	excellent	correspondence	
(Figure	5b).

3.1.3 | Structured data—overdispersed descriptors 
(Sim 3)

The	performance	of	DISPROF	across	all	36	combinations	of	[N × P	×	(θ1 
and	θ2)]	(S = 1,000)	was	more	consistent	when	μ1	=	10,	μ2	=	30	(Sim	3b)	

than	when	μ1 = μ2	=	10	(Sim	3a)	(Table	S1).	Sim	3a	displayed	increasing	
power	to	detect	groups	as	the	amount	of	overdispersion	in	G2	increased,	
even	when	 the	groups’	 centroids	overlapped	and	 the	only	distinction	
between	the	groups	was	their	respective	θ	structures.	Sim	3b	maintained	
power	values	of	1	for	all	configurations	except	three	(P =	{2,	3},	θ1	=	0,	
θ2	=	0.4;	P = 3,	θ1	=	0,	θ2	=	0.9),	whose	power	values	were	all	above	0.85.	
The	power	of	DISPROF	within	all	[P	×	(θ1	and	θ2)]	configurations	where	
θ2	>	0	increased	with	P	until	a	threshold	value	of	P	was	met,	and	for	the	
remaining	dimensions	where	P ≥	Pthreshold,	the	power	was	1.	The	value	of	
Pthreshold	decreased	as	θ2	increased	and	the	difference	in	spread	of	the	
two	groups	became	more	pronounced	(Table	S1).

F IGURE  3 Ratio	of	P:N	versus	the	
proportion	of	type	I	error:	The	type	I	error	
rates	(α =	.05)	for	the	DISPROF	hypothesis	
test	for	multivariate	structure	of	S = 1,000	
simulated	unstructured	datasets	from	
eight	different	probability	distributions	
simulated	in	scenario	Sim	1.	Data	points	
represent	each	of	the	40	different	[N × P] 
configurations;	the	dotted	vertical	line	
indicates	the	mean	type	I	error	rate	for	all	
40	configurations.	All	data	were	randomly	
parameterized	and	drawn	from	the	(a)	
binomial,	(b)	chi-	square,	(c)	exponential,	
(d)	log-	normal,	(e)	negative	binomial,	(f)	
negative	binomial/Poisson,	(g)	normal,	
and	(h)	Poisson	probability	distributions.	
The σ	and	standard	error	for	all	probability	
distributions	tested	were	≤0.01	and	.002,	
respectivelyProportion of type I error
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The	mean	number	of	groups	identified	in	Sim	3b	across	all	[P	×	(θ1 
and	θ2)]	configurations	where	θ2	<	0.9	was	approximately	2	(the	cor-
rect	number),	and	there	was	no	apparent	effect	of	increasing	P or θ2 
when	the	two	groups	were	sufficiently	separated	in	hyperdimensional	
space	 (Table	5).	 For	 simulations	 where	 θ2	=	0.9,	

̄G	 increased	 from	
~2.5	 groups	 identified	 per	 1,000	 datasets	 at	P = 2,	 to	 ~4	 groups	 at	
P =	{5,	10},	after	which	the	value	of	 ̄G	tapered	off	to	around	2	starting	
at	P = 150	 (Table	5).	The	mean	 correspondence	values	 for	 scenarios	
where θ2	=	{0,	 0.1}	 remained	 excellent	 for	 all	P; where θ2	≥	0.4,	 the	
ARIHA	 increased	with	P	 (Table	6).	 In	Sim	3a,	where	μ1 = μ2,	DISPROF	
clustering,	on	average,	never	settled	on	the	solution	of	G = 2.	When	
θ1 = θ2=	 0,	 all	P	 returned	

̄G	=	1	 (as	 the	 two	 groups	were	 effectively	
identical),	but	for	all	other	[P	×	(θ1	and	θ2)]	configurations	where	θ2	>	0,	
as	P	increased	so	did	the	value	of	 ̄G	(max	 ̄G	=	28	groups,	Table	5).	The	
same	pattern	was	observed	in	the	ARIHA	values	for	Sim	3a	as	was	seen	
for	 ̄G;	for	all	θ1 = θ2	=	0	scenarios,	the	ARIHA	=	0,	and	for	all	other	levels	

of	θ2	the	ARIHA	values	increased	along	with	P	(Table	6),	reaching	their	
maximum	values	around	1	when	P ≥ 25.

3.1.4 | Structured data—correlated descriptors 
(Sim 4)

For	all	P,	when	both	groups	had	no	correlation	structure,	 ̄G	was	con-
sistently	~2,	and	ARIHA	values	were	excellent;	where	at	least	one	group	
had	no	correlation	structure,	̄G	increased	and	the	ARIHA	decreased	as	P 
increased	(Table	7).	For	all	P	where	the	correlation	structure	for	either	
group	was	Σ ≥	0.6	 (medium	 to	 high),	DISPROF	 produced	 clustering	
solutions	where	 ̄G	increased	with	P	(Table	7).	However,	in	those	same	
scenarios,	the	ARIHA	decreased	as	P	increased,	and	it	should	be	noted	
that	none	of	 the	simulation	scenarios	 in	Sim	4a	or	4b	that	 included	
any	amount	of	within-	group	descriptor	correlation	returned	clustering	
solutions	with	an	ARIHA	≥	0.8	for	any	P ≥ 5.

TABLE  4 Descriptive	statistics	for	power,	 ̄G,	and	ARIHA	for	DISPROF	based	on	Sim	2

P Ov Minimum Mean Mode Maximum σ SE

Sim	2.	Power	−	σ2
1
 = σ2

2
	=	1,	n1 = n2	=	25,	S	=	50,000

 P = 2 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.342 0.626 0.476 1.000 0.221 .004

 P = 3 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.491 0.713 0.629 1.000 0.164 .003

 P = 5 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.770 0.877 0.760 1.000 0.068 .001

 P = 10 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.990 0.997 0.999 1.000 0.002 <.001

 P ≥ 25 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 1.000 1.000 1.000 1.000 0.000 .000

Sim	2.	 ̄G	−	σ2
1
 = σ2

2
	=	1,	n1 = n2	=	25,	S	=	50,000

 P = 2 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 1.46 1.81 1.66 2.14 0.23 <.01

 P = 3 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 1.70 1.95 2.16 2.19 0.16 <.01

 P = 5 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.07 2.16 2.13 2.22 0.03 <.01

 P = 10 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.08 2.15 2.15 2.21 0.02 <.01

 P = 25 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.05 2.06 2.06 2.09 0.01 <.01

 P = 50 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.03 2.06 2.06 2.09 0.01 <.01

 P = 150 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.03 2.06 2.06 2.09 0.01 <.01

 P = 225 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.04 2.07 2.06 2.09 0.01 <.01

 P = 300 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 2.04 2.06 2.07 2.09 0.01 <.01

Sim	2.	ARIHA	−	σ2
1
 = σ2

2
	=	1,	n1 = n2	=	25,	S	=	50,000

 P = 2 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.116 0.347 0.116 0.927 0.232 .005

 P = 3 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.198 0.407 0.198 0.897 0.190 .004

 P = 5 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.447 0.591 0.447 0.883 0.111 .002

 P = 10 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.846 0.875 0.846 0.934 0.019 <.001

 P = 25 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.984 0.988 0.984 0.991 0.001 <.001

 P = 50 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.995 0.997 0.995 0.998 0.001 <.001

 P = 150 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.995 0.997 0.995 0.998 0.001 <.001

 P = 225 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.996 0.997 0.996 0.998 0.001 <.001

 P = 300 Ov	=	{0.01,	0.02,	…	0.49,	0.5} 0.995 0.997 0.995 0.998 0.001 <.001

Structured	data—overlapping	groups:	Power	estimates	for	each	[N × P × Ov]	configuration	were	based	on	S = 1,000	datasets	with	mean	values	based	on	
50	[P × Ov]	configurations	at	each	P;	all	p-	values	were	obtained	via	999	permutations	with	significance	assessed	at	α =	.05.	Mean	number	of	groups	( ̄G)	and	
average	clustering	solution	correspondence	(ARIHA)	estimations	and	statistics	were	obtained	from	S = 50,000	datasets	across	all	Ov	for	each	configuration	
of	[N × P]. N,	total	number	of	objects	(ni	=	number	of	objects	in	group	i);	P,	total	number	of	descriptors;		Ov,	average	overlap	per	axis	between	data	clouds	
for	G1	and	G2; σ2

i
,	variance	of	group	i; σ,	standard	deviation	of	the	mean;	SE,	standard	error	of	the	mean.
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4  | DISCUSSION

The	DISPROF	algorithm	 is	designed	to	test	 the	Ho	 that	 there	 is	 “no	
multivariate	structure	among	objects,	with	respect	to	a	set	of	descrip-
tors”	in	a	dataset.	The	utility	of	deploying	the	algorithm	with	a	cluster-
ing	technique	such	as	UPGMA	is	in	(1)	the	reduction	of	arbitrary	deci-
sion	criteria	(i.e.,	dissimilarity	thresholds	for	group	identification);	 (2)	
the	ability	to	assess	multivariate	structure	at	multiple	levels	of	resem-
blance;	(3)	the	inclusion	of	the	frequentist	approach	to	hypothesis	test-
ing;	and	 (4)	 the	application	of	db	multivariate	statistical	 techniques.	
As	such,	it	is	important	to	determine	where	UPGMA	clustering,	with	
DISPROF	implemented	as	a	decision	criterion,	is	affected	by	changes	
in	 data	 configuration,	 distribution,	 dispersion,	 and	 correlation.	 We	
were	particularly	 interested	 in	statistical	error	 rates	associated	with	
DISPROF	 and	 the	 resolution	 and	 correspondence	 of	 the	 grouping	
solutions	 provided	 by	 DISPROF	 with	 UPGMA	 under	 a	 variety	 of	
potential	data	scenarios.

4.1 | Type I error and power of DISPROF

4.1.1 | Type I error

When	 assessing	 the	 DISPROF	 algorithm’s	Ho,	 there	 appears	 to	 be	
no	effect	of	distribution	type	or	[N × P]	configuration	on	type	I	error	
rates.	 The	mean	 type	 I	 error	 rates	 for	 all	 [N × P]	within	 each	 prob-
ability	distribution	type	fell	within	acceptable	ranges	for	the	expected	
number	of	rejections	(α	=	.05).	As	DISPROF	correctly	failed	to	reject	
Ho	with	acceptable	levels	of	type	I	error,	it	is,	therefore,	reasonable	to	
assume	that	there	is	a	 low	likelihood	that	the	underlying	probability	
distribution	will	 impart	some	sort	of	unknown	grouping	structure	to	

the	 dataset	 (e.g.,	where	 some	 unwanted	 noise	 structure	might	 ele-
vate	false	positives).	This	is	notable	given	that	these	techniques	were	
developed	for	ecological	datasets	such	as	those	tested	in	Sim	1f,	but	
they	appear	to	be	applicable	to	many	common	data	types	collected	
by	different	lines	of	scientific	inquiry	(Tables	1	and	2).	However,	the	
activity	displayed	by	DISPROF	in	Sim	3a	and	Sim	4	leads	us	to	believe	
that	further	investigation	may	be	required	for	datasets	with	high	lev-
els	of	overdispersion	or	correlation	among	descriptors.	In	these	cases,	
misclassification	appears	to	increase	along	with	both	θ	and	Σ,	and	is	
exacerbated	by	increases	in	P	(Tables	6	and	7).	These	findings	are	also	
notable	as	overdispersion	and	correlation	are	two	common	qualities	
of	ecological	datasets.

4.1.2 | Power

The	power	of	DISPROF	to	detect	structure	in	data	is	generally	poor	
with	low-	dimensional	(P ≤ 5)	multivariate	normal	data,	and	with	low-	
dimensional	 (P ≤ 10)	 ecological	 count	 data	where	μ1 = μ2,	 the	 latter	
being	expected	as	this	configuration	can	be	interpreted	as	G = 1.	As	
DISPROF	 performed	 decidedly	 better	when	μ1	=	10	 and	μ2	=	30,	 it	
follows	that	the	hypothesis	test	relies	heavily	on	the	location	param-
eter	when	assigning	group	membership,	and	when	heterogeneity	of	
groups	is	only	defined	by	overdispersion	the	two	are	confounded	by	
the	algorithm.	A	similar	response	to	collocated	sets	of	heterogeneous	
objects	was	observed	during	empirical	investigation	of	ANOSIM	and	
the	MANTEL	test	(Anderson	&	Walsh,	2013).	The	power	of	DISPROF	
improves	dramatically	once	P ≥ 25,	and	increases	with	greater	sepa-
ration	between	groups	in	hyperdimensional	space.	With	group	sepa-
ration	in	hyperspace,	the	power	of	DISPROF	to	evaluate	Ho	is	unaf-
fected	 by	 increasing	 the	 overdispersion	 in	 ecological	 data,	 and	 the	
test	for	structure	is	able	to	correctly	identify	the	presence	of	groups	
in	virtually	all	simulated	datasets	where	μ1	=	10	and	μ2	=	30.	The	pres-
ence	of	correlation	structure	among	the	descriptors	within	any	group	
also	 has	 no	 noticeable	 effect	 on	 the	 power	 of	DISPROF	 to	 detect	
structure.

The	power	of	DISPROF	is	excellent	 in	most	cases	and,	as	Clarke	
et	al.	 (2008)	predicted,	 its	 ability	 to	detect	 structure	becomes	more	
powerful	as	the	dimensionality	of	the	predictors	increases,	and	so	we	
have	found	their	corollary	(1)	to	be	supported.	A	potential	explanation	
for	the	increase	in	power	observed	along	with	the	increases	in	P	may	
be	related	to	the	idea	of	a	group’s	identity,	or	the	unique	combination	
of	numerical	values	that	quantitatively	represent	a	set	of	objects	(i.e.,	
their	“fingerprint”).	The	more	descriptors	used	to	quantify	an	object,	
the	 less	 likely	 the	 unique	 fingerprint	 that	 describes	 that	 group	 of	
similar	objects	could	be	re-	created	by	chance.	Therefore,	during	 the	
randomization	process	of	the	DISPROF	test,	and	with	a	large	enough	
P,	breaking	 the	structure	 in	 the	original	data	 is	 relatively	easy	 to	do	
in	 order	 to	 create	 the	 null	 distribution	 for	 the	 test	 statistic.	This	 is	
essentially	the	overfitting	problem	in	reverse	(Babyak,	2004;	Hawkins,	
2004).	 This	 overfitting	 is	 appropriate	 because	 it	 essentially	 creates	
highly	unique	observed	resemblance	profiles	to	test	against	for	struc-
ture,	 and	because	no	extrapolation	or	 interpolation	 is	based	on	 the	
overfitted	identity.	Any	unique	group	identity	exposed	in	the	dataset	

F IGURE  4 Power	of	the	DISPROF	test	versus	the	proportion	
of	group	overlap:	Statistical	power	of	DISPROF	versus	Ov	for	all	P 
tested	under	Sim	2.	Each	line	plot	represents	the	50	power	values	
for	S = 1,000	datasets	at	each	Ov	level	for	a	given	P.	The	horizontal	
dashed	line	at	power	=	0.8	is	the	lower	limit	of	acceptable	power	
values
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will	be	similarly	overfitted	because	all	objects	are	represented	in	the	
same	space	of	descriptors.

4.2 | Resolution and correspondence of DISPROF

If	either	of	the	theoretical	corollaries	presented	by	Clarke	et	al.	(2008)	
were	 to	 be	 considered	 cautionary,	 it	 would	 be	 corollary	 (2),	 which	

regards	the	resolution	of	DISPROF	solutions	being	finer	than	ecolo-
gists	(or	any	professional)	utilizing	the	method	could	interpret	mean-
ingfully.	We	further	contend	that	the	correspondence	between	these	
grouping	 partitions	 and	 any	 known	grouping	 structure	 in	 the	 simu-
lated	datasets	is	informative	and	is	indicative	of	the	DISPROF	cluster-
ing	method’s	ability	to	settle	on	“meaningful”	solutions.	Therefore,	any	
discussion	of	 the	 issues	 surrounding	 the	 resolution	of	 the	grouping	

F IGURE  5 The	relationship	for	 ̄G	and	ARIHA	with	Ov	for	DISPROF	clustering:	(a)	The	mean	number	of	groups	identified	( ̄G)	versus	the	average	
data	cloud	overlap	(Ov)	for	all	P	tested	under	Sim	2.	Each	line	plot	represents	the	50	 ̄G	values	for	S = 1,000	datasets	at	each	Ov	level	for	a	given	
P.	The	optimal	grouping	solution	(G = 2)	is	represented	by	the	horizontal	dashed	line.	(b)	The	mean	correspondence	of	the	grouping	solution	
(ARIHA)	versus	the	average	data	cloud	overlap	(Ov)	for	all	P	tested	under	Sim	2.	Each	line	plot	is	configured	as	in	panel	(a),	the	horizontal	black	
dashed	line	represents	lower	bound	for	excellent	correspondence	(ARIHA	=	0.9),	and	the	red	dashed	line	represents	lower	bound	for	good	
correspondence	(ARIHA	=	0.8).	Boxplots	to	the	right	represent	the	distribution	of	standard	errors	for	each	estimate	of	the	 ̄G	and	ARIHA	for	all	Ov 
within	a	noted	dimensionality	for	P.	The	horizontal	red	line	in	each	boxplot	represents	the	median	standard	error	value	in	the	distribution,	with	
the	upper	and	lower	edges	of	the	box	being	the	25th	and	75th	percentiles.	Whiskers	extend	to	encompass	the	most	extreme	data	points,	and	
outliers	are	plotted	individually	as	crosses
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solutions	is	incomplete	without	also	discussing	their	correspondence	
with	reality	(i.e.,	“correctness”).

4.2.1 | Effect of group locations

The	 structured	 data	 were	 simulated	 as	 either	 two	 groups	 whose	
location	 in	hyperspace	was	defined	by	 the	progressively	decreasing	
amount	of	average	overlap	between	the	groups’	data	clouds	(Sim	2),	
or	as	two	stationary	groups	whose	location	was	predefined	to	be	the	
same	(Sim	3a)	or	different	(Sim	3b,	Sim	4).	In	all	cases,	we	have	demon-
strated	that	when	the	two	groups	have	higher	overlap	in	hyperspace,	
the	DISPROF	algorithm	has	 a	 tendency	 to	underestimate	 the	num-
ber	of	groups,	and	often	settles	on	solutions	where	only	a	single	large	
group	exists.	When	clustering	multivariate	normal	data,	as	 in	Sim	2,	
the	effects	of	the	amount	of	overlap	are	overridden	by	increases	in	the	
dimensionality	of	the	dataset	(Figure	5a)	and	potentially	are	due	to	the	
increase	in	complexity	of	the	fingerprint	for	the	groups	that	coincides	
with	the	extra	dimensions.	The	result	of	this	override	is	that	even	at	
levels	of	data	overlap	that	reach	as	much	as	50%,	DISPROF	cluster-
ing	is	able	to	detect	the	correct	number	of	groups	in	data	that	have	
P ≥ 5.	However,	the	correspondence	values	for	those	correct	numbers	
of	 groups	do	not	 reach	acceptable	 levels	 (ARIHA	≥	0.80)	until	P ≥ 10 
(Figure	5b).	Therefore,	when	clustering	multivariate	normal	data	with	
equal	variances,	the	most	reliable	resolution	and	correspondence	lev-
els	will	be	achieved	with	P ≥ 10.

The	simulated	ecological	count	data	showed	a	profound	effect	of	
group	location	on	the	resolution	and	correspondence	of	the	clustering	
solutions	provided	by	DISPROF.	Particularly	in	cases	where	the	two	sets	
of	objects	had	the	same	central	tendency	but	different	overdispersion	
structures,	and	regardless	of	the	number	of	descriptors	in	the	dataset,	
DISPROF	either	underestimated	the	number	of	groups	(e.g.,	Gmode	=	1),	
or	 very	 greatly	 overestimated	 it	 (e.g.,	Gmode	=	26).	 This	 directly	 con-
trasts	with	 the	performance	of	DISPROF	with	ecological	 count	data	
whose	 groups	 are	 separated	 in	 hyperspace.	 In	 these	 cases,	 once	
again	 regardless	 of	 the	 number	 of	 descriptors,	 DISPROF	 performed	
optimally	and	identified	the	correct	number	of	groups,	on	average,	in	
ecological	data,	even	with	high	levels	of	overdispersion.	This	finding	is	
consistent	with	those	for	the	multivariate	normal	data,	in	that	low	Ov 
improved	DISPROF’s	performance	as	a	clustering	criterion.	High	group	
overlap	may	negatively	affect	DISPROF	in	the	same	manner	as	having	
low	numbers	of	descriptors	(P),	where	the	high-	overlap	situation	allows	
for	group	fingerprints	that	are	not	unique	enough	when	compared	to	
one	another.	In	this	case,	the	randomization	process	is	unable	to	break	
the	structure	 in	 the	datasets	and	the	differences	between	the	mean	
resemblance	profile	(representing	Ho)	and	the	observed	profile	are	neg-
ligible	(i.e.,	no	structure	present);	thus,	the	routine	returns	a	solution	
that	identifies	the	entire	data	cloud	as	one	group.

4.2.2 | Effects of overdispersion among descriptors 
within groups

The	 ecological	 count	 data	 used	 here	 were	 simulated	 so	 that	 we	
could	examine	the	effects	of	increasing	the	overdispersion	(θ)	of	G2 
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while	holding	θ1	=	0.	The	purpose	of	this	exercise	was	to	 increase	
the	 relatability	 of	 the	 results	 to	 ecological	 data,	 as	many	 species	
composition	and	abundance	datasets	are	highly	overdispersed.	Our	
results	indicate	that	when	the	groups	do	not	overlap	in	hyperspace,	
the	effects	of	 the	overdispersion	of	 the	second	group	are	negligi-
ble	when	considering	the	resolution	of	the	clustering	solutions,	but	
the	correspondence	of	those	solutions	with	reality	is	unacceptable	
when	P ≤ 10	for	data	with	high	overdispersion	(θ2	=	0.9).	When	the	
groups	are	defined	by	different	 levels	of	overdispersion	and	share	
a	 location,	 the	 effects	 of	 increasing	 overdispersion	 become	more	
pronounced	and	are	seemingly	amplified	by	 increasing	the	dimen-
sionality	of	the	dataset	being	tested.	In	these	cases,	the	resolution	
of	the	solutions	is	as	described	previously,	but	the	correspondence	
levels	 for	 the	 resultant	partitions	 are	 all	 inadequate.	The	point	of	
interest,	however,	is	that	the	ARIHA	values	tended	to	be	around	0.5	
for	 clustering	 scenarios	where	 the	overdispersion	 among	descrip-
tors	 is	 medium	 or	 high	 (i.e.,	 θ2	=	{0.4,	 0.9})	 and	 P ≥ 25	 (and	 for	
θ2	=	0.1,	the	Pthreshold	=	150).	This	indicates	that	one	group	is	being	
identified	 fairly	 well	 and	 the	 other	 is	 being	 completely	misrepre-
sented	by	the	grouping	algorithm.	We	suspect	that	the	increase	in	
θ2	causes	the	numerical	fingerprint	of	the	objects	within	the	group	
to	be	 too	dissimilar	when	only	compared	 to	one	another,	and	 the	
result	 is	 a	 series	 of	 singleton	 groups,	 as	 the	 clustering	 algorithm	
iteratively	 works	 through	 the	 UPGMA	 connection	 of	 the	 overd-
ispersed	 nodes.	 It	 seems	 as	 though	 the	 effects	 of	 overdispersion	
among	ecological	count	data	are	secondary	to	the	effects	of	group	
location	in	hyperspace,	but	supersede	those	of	dataset	dimensional-
ity	(dimension	<	overdispersion	<	location).

4.2.3 | Effects of correlation structure among 
descriptors within groups

Our	simulation	studies	that	 incorporated	different	correlation	struc-
tures	 among	 descriptors	within	 groups	were	 also	 undertaken	 in	 an	
effort	 to	 relate	 our	 investigations	 to	 studies	 incorporating	 ecologi-
cal	datasets,	which	often	contain	descriptors	that	are	correlated	with	
one	 another	 to	 some	 degree.	We	 used	multivariate	 normal	 data	 in	
our	simulations	to	ensure	that	the	observed	effects	of	different	cor-
relation	scenarios	were	not	confounded	by	some	other	distributional	
assumptions.	It	appears	as	though	medium	to	high	levels	of	correla-
tion	 (Σ =	{0.6,	 0.9})	 among	 descriptors	 within	 a	 group	 will	 strongly	
impact	 the	 number	 of	 groups	 identified,	 and	 it	 tends	 to	 increase	 ̄G 
as	Σ	increases.	Drawing	inferences	from	these	clustering	results	may	
be	 dubious,	 however,	 because	 for	 virtually	 all	 clustering	 solutions	
that	 had	medium	 or	 high	 correlation	 among	 descriptors,	 regardless	
of	dimension,	 the	mean	correspondence	was	well	below	acceptable	
limits.

Correlation	structure	among	groups	affects	the	shape	of	the	data	
cloud	 in	hyperspace.	 It	 is	 interesting	 to	note	 that	DISPROF	seems	
to	 have	 an	 improved	 ability	 to	 detect	 more	 “correct”	 structure	 in	
data	where	the	shapes	(i.e.,	correlation	structures)	of	the	groups	are	
the	same	(Σ1 = Σ2),	as	opposed	to	one	group	having	no	correlation	
structure	 (i.e.,	 spherical	 data	 cloud)	 and	 the	 second	 group	 having	

medium-	to-	large	 correlations	 among	 descriptors	 (i.e.,	 data	 cloud	
distortion).	As	our	simulations	only	explore	medium-	to-	high	correla-
tion	among	all	descriptors,	 it	would	be	of	 interest	 to	examine	 low,	
negative,	 and	mixed	 correlation	 structures	 to	 describe	DISPROF’s	
performance	variability	under	a	full	range	of	correlation	conditions.	
The	control	scenarios,	where	Σ1 = Σ2	=	0,	were	among	the	only	sce-
narios	 that	 returned	reasonable	 ̄G or ARIHA	 results;	however,	 these	
scenarios	effectively	recreate	a	simplified	version	of	those	data	sim-
ulated	under	Sim	2.	The	overall	ARIHA	results	suggest	that	increasing	
the	correlation	between	descriptors	in	one	group	and	not	the	other	
tends	 to	 produce	 increasingly	 unreliable	 grouping	 partitions,	 and	
these	results	are	in	line	with	those	from	Sim	2,	where	low	P	results	
in	low	ARIHA.	One	explanation	for	this	might	be	that	as	the	level	of	
correlation	 between	 descriptors	 increases	 the	 effective	 size	 of	 P 
decreases,	and	when	considering	the	pairwise	dissimilarity	between	
objects,	 because	 the	variability	 across	 all	 correlated	 descriptors	 in	
a	group	is	essentially	the	same,	datasets	with	high	P	and	Σ	tend	to	
have	 similar	DISPROF	 clustering	 dynamics	 as	 datasets	with	 low	P 
and	no	correlation	structure.

5  | CONCLUSIONS

5.1 | DISPROF as a clustering decision criterion

Strengths	 of	 using	 resemblance	 profiles	 as	 a	 hypothesis	 test	 for	
multivariate	 structure	are	 that	 the	 type	 I	 error	 rates	 (1)	 are	within	
the	range	of	acceptability	for	α	=	.05,	(2)	tend	to	be	binomially	dis-
tributed	around	5%,	and	(3)	are	resistant	to	the	effects	of	both	the	
underlying	probability	density	function	and	(4)	the	[N × P]	configura-
tion	of	 the	data.	Additional	 strengths	 include	 the	 facts	 that,	when	
μ1	≠	μ2,	the	power	of	DISPROF	(5)	is	within	the	acceptable	range	for	
P ≥ 10	and	is	unaffected	(6)	by	up	to	50%	average	group	overlap,	(7)	
by	increasing	overdispersion	among	ecological	count	data,	and	(8)	by	
increasing	correlation	structures	among	descriptors.	Finally,	 (9)	 the	
first	theoretical	corollary	proposed	by	Clarke	et	al.	 (2008),	that	the	
power	of	the	test	for	multivariate	structure	increases	as	P	increases,	
was	confirmed.

From	 a	 traditional	 statistical	 error	 perspective,	 it	 appears	 that	
using	 resemblance	 profiles	 is	 a	very	 effective	method	 for	 identify-
ing	 multivariate	 structure;	 it	 rarely	 identifies	 structure	 that	 is	 not	
present	and	it	almost	always	identifies	structure	that	is	present.	The	
weaknesses	of	using	 this	hypothesis	 test	are	mostly	 related	 to	 the	
second	 Clarke	 et	al.	 (2008)	 corollary,	 where	 the	 resolution	 of	 any	
grouping	structure	identified	may	be	too	fine	to	interpret	meaning-
fully.	The	realized	power	of	the	resemblance	profile	hypothesis	test	
comes	when	it	is	implemented	as	a	clustering	criterion,	and	success	
is	based	upon	 the	partition	 returned	by	 the	algorithm.	The	 resolu-
tion	of	 the	partition	and	 the	 solution’s	 correspondence	with	 inter-
pretable	 multivariate	 structure	 in	 the	 dataset	 are	 ultimately	 what	
the	researchers	will	use	to	explain	their	theories.	The	second	Clarke	
et	al.	 (2008)	 corollary	 appears	 to	 be	 valid,	 but	 it	 manifests	 differ-
ently	 depending	 on	 the	 type,	 configuration,	 and	 hyperdimensional	
structure	of	the	dataset	being	considered.	However,	if	we	constrain	
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our	analysis	to	relatively	high-	dimensional,	 low-	correlation	datasets	
where	the	group	locations	are	separated,	then	the	resolution-	versus-	
interpretability	concern	wanes	greatly.	The	power	to	detect	structure	
is	very	high,	even	with	P	as	low	as	10	descriptors,	and	so	it	follows	
that	any	additional	resolution	imparted	on	the	solution	(which	may	
account	 for	any	reduction	 in	correspondence)	 is	 likely	 the	result	of	
an	actual	numerical	signal	in	the	dataset,	and	can	be	manifest	from	
random	(or	unmeasured)	processes,	or	error.	An	alternative	explana-
tion	may	be	related	to	the	construction	of	the	null	distribution	for	the	
test	statistic	π,	where	group	properties	such	as	location	and	hyper-
dimensional	 shape	 may	 preclude	 the	 permutation	 procedure	 from	
accurately	depicting	the	null	scenario.

5.2 | Recommendations for using DISPROF 
(SIMPROF)

The	 results	 presented	 for	 type	 I	 error,	 power,	 resolution,	 and	 cor-
respondence	 suggest	 that	 using	 resemblance	 profiles	 as	 a	 test	 for	
multivariate	 structure,	 and	 as	 a	 clustering	 decision	 criterion,	 has	
strengths	and	weaknesses.	The	results	also	highlight	pitfalls	that	can	
be	avoided	if	particular	care	is	taken	prior	to	implementation	of	these	
clustering	 techniques.	 The	 complex	 interactions	 between	 the	 data	
type/configuration	 and	 the	 hyperdimensional	 structure	 and	 overlap	
between	groups	strongly	affect	the	results	achieved	when	clustering	
with	DISPROF.	The	method	is	nonetheless	an	improvement	over	tra-
ditional	UPGMA	clustering,	most	notably	due	to	the	removal	of	the	
arbitrary	and	static	assignments	of	resemblance	thresholds	that	define	
groups	of	objects.	Because	the	realized	power	of	using	resemblance	
profiles	as	 clustering	decision	criteria	 cannot	be	maximized	without	
making	tradeoffs	between	resolution	and	correspondence	with	inter-
pretable	structure,	we	make	the	following	recommendations.

1. Exploratory	analysis,	such	as	principle	coordinates	analysis	(PCoA),	
should	 be	 performed	 to	 determine,	 at	 a	 minimum,	 if	 any	 hy-
pothesized	 grouping	 structures	 might	 have	 high	 amounts	 of	
overlap	 (i.e.,	Ov >	50%)	 in	hyperdimensional	space,	and	DISPROF	
should	 be	 avoided	 in	 high-overlap	 situations.	 Data	 clouds	 that	
appear	 to	 overlap	 greatly	 could	 produce	 unreliable	 results	 and	
should	 not	 be	 clustered	 using	 these	 methods.

2. Medium-to-high	correlation	(i.e.,	≥0.6)	among	all	descriptors	should	
be	avoided,	and	efforts	should	be	made	to	either	reduce	or	remove	
the	correlated	descriptors	in	a	dataset.	In	an	effort	to	create	more	
parsimonious	models,	priority	should	be	given	to	descriptors	that	
are	indicative	of	independent	processes,	whenever	possible.	In	the	
case	of	ecological	abundance	data,	where	many	species	are	often	
both	of	interest	and	are	highly	correlated,	it	may	be	of	benefit	to	
use	 a	 dimension	 reduction	 technique	 (e.g.,	 PCoA)	 that	 produces	
new	orthogonal	descriptors,	with	no	correlation	structures,	prior	to	
clustering	with	DISPROF.

3. The	data	dimensionality	should	be	restricted	to	P ≥ 25	descriptors	
in	order	to	achieve	solutions	with	ideal	resolution	and	“excellent”	
correspondence	 (ARIHA	≥	0.90)	 to	 meaningfully	 interpretable	
structure.

4. A	 less	conservative	guideline	would	be	 to	 restrict	 the	number	of	
descriptors	to	P ≥ 10.	This	new	 limit	 retains	power,	 increases	the	
potential	for	higher	resolution	solutions,	and	reduces	correspond-
ence	from	“excellent”	to	“good”	(0.80	≤	ARIHA	<	0.90).

Since	 its	 initial	 development	 and	 addition	 to	PRIMER-	E	 (Clarke	&	
Gorley,	2015),	the	use	of	resemblance	profiles	has	been	gaining	traction	
as	a	clustering	criterion,	mostly	in	the	ecological	 literature.	Our	results	
provide	 recommendations	 for	 ecologists	 to	 use	when	 applying	 these	
methods,	and	demonstrate	the	methods’	transferability	to	other	numer-
ical	analyses,	data	types,	and	disciplines.	With	a	better	understanding	of	
the	dynamic	performance	of	resemblance	profiles	as	clustering	criteria	
and	the	potential	variability	in	the	results	they	produce,	researchers	can	
more	confidently	deploy	SIMPROF	and	interpret	the	results	with	respect	
to	beta-	diversity,	species/environment	relationships,	or	any	other	com-
plex	multivariate	model	and/or	associated	hypotheses.	While	there	ap-
pear	to	be	clear	advantages	imparted	by	the	use	of	resemblance	profiles	
as	clustering	criteria,	 there	are	still	many	questions	that	deserve	addi-
tional	attention	that	were	beyond	the	scope	of	this	evaluation.
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